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It is well known, that standard upwind schemes for the Euler equations face a number of
problems in the low Mach number regime: stiffness, cancellation and accuracy problems. A
new aspect, presented in this paper, is the dependence on the cell geometry: applied on a
triangular grid, the accuracy problem disappears, i.e. flows of arbitrarily small Mach num-
bers can be simulated on a fixed mesh. We give an asymptotic analysis of this, up to date
unknown, phenomenon for the first-order Roe scheme and present a number of numerical
results.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Schemes, originally designed to calculate compressible flow, encounter three problems in low Mach number flow:

(1) The wave speeds of acoustic and flow phenomena are of different orders of magnitude – their ratio is measured by the
Mach number. Low Mach numbers slow down the calculation of phenomena on the time scale of the flow such as heat
or water transport (stiffness problem).

(2) The pressure variable has to accommodate a constant background pressure of order Oð1Þ and the physically relevant
pressure variations of order OðM2Þ, which leads to numerical round-off errors (cancellation problem).

(3) For stability reasons, upwind schemes introduce artificial viscosity, which depends on the Mach number. In certain
settings this can cause the truncation error to grow with decreasing Mach numbers (on a fixed mesh), preventing
the numerical solution to approximate inviscid, incompressible flow (accuracy problem).
. All rights reserved.
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The cancellation problem can be avoided by working only with the fluctuation quantities introduced in the wave propa-
gation approach by Leveque [1]. This approach was applied to low Mach number flow by Sesterhenn et al. [2]. To overcome
the stiffness problem in steady flow simulations, a variety of time-derivative or flux preconditioning techniques have been
developed and applied to compressible (and incompressible) solvers for the inviscid flow equations, such as Turkel’s ap-
proach, [3,4], or the characteristic time stepping approach by van Leer et al. [5]. The stiffness is reduced by (almost) equal-
ising the propagation speeds of the different waves for M! 0, which accelerates the convergence to steady state. At the
same time, the artificial viscosity is tuned correctly for all characteristic waves and thus the accuracy problem is circum-
vented. Preconditioning in the context of viscous flow was dealt with by Choi and Merkle in [6]. In addition, the authors re-
port on the absence of the accuracy problem down to M ¼ 10�6 for their preconditioning methods, which are implemented
on grids with quadrilateral cells. The accuracy problem was explicitly addressed and solved with a preconditioning of the
numerical dissipation tensor by Guillard and Viozat [7]. Their asymptotic analysis of the Roe scheme illuminates the reason
for its failure for M! 0 on Cartesian grids.

2. Numerical experiments

In this section we present a variety of numerical experiments with the explicit, non-preconditioned, first-order Roe scheme
that all suggest an intriguing result: the accuracy depends on the geometry of the finite volume cell. On Cartesian grids the
accuracy of the results deteriorates with decreasing Mach numbers, while the accuracy is maintained on triangular grids.

2.1. Flow around a cylinder

The flow around a cylinder is very useful since we know the incompressible potential flow solution, i.e. we have an ana-
lytical reference solution for M! 0. The initial conditions are set uniform to q0 ¼ 1:0;u0 ¼ ðu0; 0ÞT ; p0 ¼ 1:0; where the abso-
lute value ku0k ¼

ffiffifficp M0 of the initial velocity is set to meet the prescribed initial Mach number M0, and c is the adiabatic
index set to 1:4 throughout our calculations. The exact solution at infinity is assumed uniform
Fig. 1.
triangu
q1 ¼ 1:0; u1 ¼ ðu1; 0ÞT ; p1 ¼ 1:0:
In the far-field boundary conditions this solution is assumed to be a good approximation of the solution at the outer boundary.
These values are prescribed in the ghost cells.

For the body-fitted, structured grid we use a division into n/ ¼ 150 cells along the circumference and nr ¼ 50 along the
radius. We start the calculations on a regular cylinder grid, also called polar grid, and continuously transform it to a trian-
gular grid. This transition is implemented by reducing the original length Dx0 of one of the four edges of the quasi square cell
by a factor 10n. The resulting edge has length Dx ¼ Dx0=10n and belongs to a trapezoid, which converges for n!1 to a tri-
angular cell. In the finite volume context the flux across the ’squeezed’ edge also converges to zero. In Fig. 1 cells of the grid
and, underneath, the corresponding isolines of pressure are shown. On the regular grid (left) the solution is completely
wrong. The trapezoidal cells in the middle lead to a solution that is ‘on the right way’. The isolines of pressure in the right
figure are of good accuracy. Further reduction of Dx does not improve the accuracy – the ratio Dx=Dx0 has reached a critical
value. The question is, does the critical ratio depend on the inflow Mach number?
Flow around a cylinder with the classical first-order Roe scheme on a grid with 150 � 50 cells at M0 ¼ 10�2. Top line: trapezoidal cells converging to
lar cells. Bottom line: corresponding isolines of pressure.
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Fig. 2. L2-error of the pressure as a function of grid cell shape: Dx ¼ Dx0 represents regular grid cells and Dx=Dx0 � 0 approximately triangular grid cells.
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In Fig. 2 we show the results of a study to clear this question. It can be seen, how the accuracy improves, when the cell
shape approaches a triangle. The abscissa shows the ratio of original edge length Dx0 to the reduced edge length Dx on a log-
arithmic scale: log Dx=Dx0. The ordinate represents the L2 pressure deviation from the incompressible potential flow solution
on a logarithmic scale. Comparing the diagrams, we see that for M0 ¼ 10�k the L2-error of the pressure reaches a plateau once
the edge length Dx is reduced by a factor of about 10k.

Structured vs. unstructured triangular grids. The previous experiment on structured grids leaves an open question: is the
accuracy problem present on unstructured triangular grids? To find an answer we repeated the simulation on an unstruc-
tured cylinder grid with approximately the same resolution. The results, cf. [8], are of comparable accuracy.

Note on unstructured quadrilateral grids. A similar experiment was done with an unstructured grid of quadrilateral finite
volume cells. The deviation of the regular grid was obtained with a random shift of the grid vertices. The isolines of pressure,
compared to the regular grid, did not improve. We therefore conclude, that the reason for the accuracy problem is not linked
to the grid structure as a whole, but to the geometry of the finite volume cell.
2.2. Flow around a square

The flow around a square has a major advantage: we can work on a Cartesian grid, which simplifies the analysis. We com-
pare the solution obtained on a Cartesian grid with the one obtained on a related triangulation as depicted in Fig. 3. Note that
the diagonals are introduced in a uniform direction from the lower left to the upper right corner of the Cartesian cells.

The resulting grids for the flow around a square are depicted on the left column of Fig. 4. To make the calculations on the
quadratic flow domain comparable, the total number of cells were chosen to be similar: 2� 35� 35 ¼ 2450 in the triangu-
lation and 50� 50 in the Cartesian mesh – minus the cells covered by the rectangular obstacle. The initial and boundary con-
ditions are set analogously to the ones for the flow around a cylinder. The angle of attack was set to a ¼ 45�. Note that an
inflow ‘‘against” the diagonals does not significantly change the result.

On the right of Fig. 4 the isolines of pressure for an inflow Mach number of M0 ¼ 10�3 and an angle of attack of a ¼ 45� are
shown. For this test case we do not know the exact solution, yet, we expect the maximum pressure in the stagnation point to
be about 1

2 cM2
0 (Bernoulli’s principle). This is well approximated on the triangular grid and overestimated by a factor of 100

on the Cartesian grid, where, in addition, the isolines of pressure are grid-aligned.

2.3. A steady shear layer

We suggest an even simpler test case: the inflow of a contact discontinuity. Investigated are two types: a steady entropy
layer and a steady shear layer, which are set up oblique to the grid lines by the inflow boundary conditions. The same grids
are used as for the Gresho vortex simulation.
Fig. 3. Creating a triangular grid from a Cartesian grid.
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Fig. 4. Isolines of pressure for the flow around a square at M ¼ 10�3.
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It can be observed – for both types of grid – that the smearing of an inflowing entropy contact depends on the angle, but
there is no dependency on the Mach number, cf. [8]. The situation is entirely different for shear layers. We therefore only
present the more interesting results for a shear flow. The settings are: on the left and bottom edge of the rectangular flow
domain X ¼ ½0;1� � ½0;1� we choose inflow boundary conditions with constant density qghost ¼ 1:0 and a jump in the pre-
scribed inflow velocity:
ughost ¼
1:0kuinkðcos a; sinaÞT y 6 0:5;

1:1kuinkðcos a; sin aÞT y > 0:5;

(

where a ¼ 10� is the angle of inflow in this test case. The absolute value kuink ¼
ffiffifficp M0 is tuned to meet the prescribed Mach

number M0. The pressure in the ghost cells pghost next to the inflow boundary is extrapolated from the neighbouring interior
cells. For the right and upper boundary we impose outflow boundary conditions by extrapolating the values of density, veloc-
ity and pressure into the ghost cells.

In Fig. 5, on the left columns, we see the isolines of the Mach number obtained on a grid with 2� 50� 50 triangular finite
volume cells and on the right column the results for a Cartesian grid with 70� 70 cells. In the background the grid lines are
indicated in a light grey. We make two major observations: on triangular finite volume cells the numerical dissipation is inde-
pendent of the Mach number and the angle of the shear layer agrees with the inflow boundary condition. On Cartesian cells
the shear layer is bent towards the grid lines for decreasing Mach numbers until it is, for M0 � 10�3, completely aligned to
the grid.
2.4. Proposal

All simulations suggest that the accuracy problem occurs on Cartesian grids and manifests itself in a Mach number depen-
dent dissipation of flow structures. The accuracy seems to be independent of the Mach number if the first-order Roe method
is used on triangular finite volume cells. This will be analysed in detail in the following.
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Fig. 5. Inflow of a shear discontinuity on a grid with 2� 50� 50 triangular cells (left column) and 70� 70 square cells (right column). The inflow angle is
set to a ¼ 10� and the inflow velocity is set according to the given Mach number ranging from M0 ¼ 10�1 down to M0 ¼ 10�3. In the upper half of the grid
the inflow Mach number is 1.1 times larger than in the lower half.
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3. Asymptotic analysis

3.1. Introduction

The 2D Euler equations can be written as:

@q
@t
þr � FðqÞ ¼ 0; ð3:1Þ



Fig. 6. Index notation and local coordinate system for a triangular grid.
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FðqÞ ¼
fðqÞ
gðqÞ

� �
; ð3:2Þ
where
q ¼

q
qu

qv
qe

2
6664

3
7775; fðqÞ ¼

qu

qu2 þ p

quv
ðqeþ pÞu

2
6664

3
7775; gðqÞ ¼

qv
quv

qv2 þ p

ðqeþ pÞv

2
6664

3
7775: ð3:3Þ
Non-dimensionalisation with separate references for flow and sound velocity introduces a 1=M2-factor for the pressure
gradient. To analyse the asymptotic behaviour of the equations for M! 0, it is customary to assume an asymptotic 3-term
expansion of the physical quantities in terms of the small Mach number
/ ¼ /ð0Þ þM/ð1Þ þM2/ð2Þ þ Oð M2Þ as M! 0;
where / can either be velocity u, pressure p or density q. Note that in steady low Mach number flow, the Euler equations are
characterised by a constant background pressure pð0Þ and variations in pð2Þ, cf. [9]. It is worth mentioning, that in unsteady
flow pð1Þ can be present: for example a global compressionr � uð0Þ < 0 leads to pressure perturbations in pð1Þ on the acoustic
time scale (and a pressure increase in pð0Þ on the time scale of the flow), cf. [8].

A rigorous asymptotic analysis of the semi-discrete Roe scheme on Cartesian grids was given by Guillard and Viozat in [7].
They show the existence of an unphysical pressure variation in pð1Þ. A plausible explanation of this phenomenon is also given
in [8]. The numerical behaviour of the Roe scheme on triangular grids is entirely different: there is no variation in pð1Þ, as will
be shown next. This physically correct behaviour is accompanied by a constraint: DUð0Þ ¼ 0, i.e. the leading-order velocity
component normal to a cell edge does not jump. In the last section we show that this constraint leaves enough degrees
of freedom for the velocity field to represent a physical flow.

For simplicity, the analysis is restricted to triangular finite volume cells derived from Cartesian grid cells by introducing a
diagonal as an additional cell edge dividing the square into a upper and a lower triangle, see Fig. 7. We further restrict the
analysis to steady flow with a constant background density qð0Þ ¼ const. The asymptotic equations of the semi-discrete
Roe scheme are derived in the Appendix and are written with the notation similar to [7] with indices as depicted in
Fig. 6: cell indices are i or j and mðiÞ is the set of neighbouring cells. The area of the reference cell is Ai. Symbol il denotes
the edge between cell i and l with length dil and nil the corresponding outer normal vector. The difference is given by
Fig. 7. Indices for upper triangle (left) and lower triangle (right).



Fig. 8. Two-value structure of the leading-order pressure pð0Þ.
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Dil/ ¼ /i � /l, and /il is the Roe average of /i and /l. The normal component of u is U ¼ u � n and V ¼ u � t is the transverse
component.

3.2. The leading-order pressure p(0)

As a preliminary, we show the uniformity of p(0) – a result which is also valid for Cartesian grids, cf. [7]. The momentum
Eqs. ðM�1

x Þ and ðM�1
y Þ corresponding to the OSðM�1Þ terms, as derived in the Appendix, are
X

l2mðjÞ
pð0Þl � ðnxÞjldjl ¼ 0;

X
l2mðjÞ

pð0Þl � ðnyÞjldjl ¼ 0:
They indicate that the central differences of pð0Þ in horizontal and in vertical direction vanish separately. Applying the simple
geometry, cf. right of Fig. 7, we obtain pð0Þr ¼ pð0Þl and pð0Þl ¼ pð0Þs for the lower triangle. An analogous result is true for the upper
triangles. These relations restrict pð0Þ to form a two-value structure as depicted in Fig. 8. To show uniformity of pð0Þ, we use
the steady form of the evolution equation of pð0Þ as derived in the Appendix:
c� 1
2

1
Ai

X
l2mðjÞ

hð0Þjl

að0Þjl

Djlpð0Þdjl ¼ 0: ðP0Þ
Let us assume, without loss of generality, that pð0Þj ¼ A > B. Then all pressure differences in ðP0Þ satisfy
Djlpð0Þ ¼ A� B > 0;
so that the sum in ðP0Þ has to be greater than zero, which contradicts the equality to zero. Therefore A ¼ B and the pressure of
leading order has to be constant:
pð0Þi ¼ pð0Þj for i; j 2 X:
The constant background pressure pð0Þ is specified by the boundary conditions.

3.3. The first-order pressure pð1Þ

To show the constancy of the first-order pressure pð1Þ we analyse the equations for the leading order velocity in horizontal
and vertical direction, uð0Þ and v ð0Þ, as well as the equation for the first-order pressure pð1Þ. In the following analysis let us
introduce reference quantities, such that
pð0Þ ¼ 1ffiffifficp ; qð0Þ ¼ 1) ½að0Þ�2 ¼ cpð0Þ

qð0Þ
¼ 1: ð3:4Þ
This is possible since pð0Þ ¼ const. The assumption qð0Þ ¼ const is sensible as we have seen in Section 2 that density jumps are
transported independently of the Mach number. To facilitate reading, we omit the superscripts and identify pð1Þ , p;Uð0Þ , U
whenever there is no risk of confusing different order terms. Note that for upper and lower triangle different sets of indices are
used. The edge lengths Dx ¼ Dy ¼ d drop out of the equations and all time derivatives are omitted because we analyse the
steady case.

The equation for uð0Þ as derived in Appendix A.1.2 is
d
dt

uð0Þi|fflfflffl{zfflfflffl}
@
@tu
ð0Þ

þ 1

qð0Þi

1
Ai

X
l2mðiÞ

pð1Þl ðnxÞil
2

dil|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

qð0Þ
@
@xpð1Þ

¼ �1
2

að0Þi

qð0Þi

1
Ai

X
l2mðiÞ

qð0Þil DilU
ð0ÞðnxÞildil|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
2að0Þ12

@2

@x2uð0Þd

; ðU0Þ
where the underbracing shows the continuous counterparts. With the assumptions (3.4) and the simple geometry, Eq. ðU0Þ
can be written for the upper triangle as
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ped� pwdþ DieUd� DiwUd ¼ 0:
If we add ð�pi þ piÞd to the LHS, the pressure variables can be transformed into jump variables:
Diwp� Diepþ DieU � DiwU ¼ 0: ð3:5Þ

The analogous equation for the lower triangle is
Djlp� Djrpþ DjrU � DjlU ¼ 0: ð3:6Þ
The equation for v ð0Þ as derived in Appendix A.1.2 reads
d
dt

v ð0Þi|fflfflffl{zfflfflffl}
@
@tvð0Þ

þ 1

qð0Þi

1
Ai

X
l2mðiÞ

pð1Þl ðnyÞil
2

dil|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

qð0Þ
@
@ypð1Þ

¼ �1
2

að0Þi

qð0Þi

1
Ai

X
l2mðiÞ

qð0Þil DilU
ð0ÞðnyÞildil|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
2að0Þ @

2

@y2vð0Þd

: ðV0Þ
This equation can be transformed in a similar way for the upper triangle to
Diep� Dinp� DieU þ DinU ¼ 0; ð3:7Þ
and for the lower triangle to
Djsp� Djlp� DjsU þ DjlU ¼ 0: ð3:8Þ
The equation for pð1Þ, Appendix A.1.2, is given by
d
dt

pð1Þi|fflfflffl{zfflfflffl}
@
@tp
ð1Þ

þ cpð0Þi

1
Ai

X
l2mðiÞ

uð0Þl � nil

2
dil|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cpð0Þr�uð0Þ

¼ �1
2

að0Þi

1
Ai

X
l2mðiÞ

Dilpð1Þdil|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1
2að0Þr2pð1Þd

: ðP1Þ
We make use of the fact that a closed chain of vectors gives the zero vector, to replace the velocity uð0Þ by its corresponding
jump variable DU:
X

l2mðiÞ
uð0Þl � nildil ¼

X
l2mðiÞ
ðuð0Þl � uð0Þi Þ � nildil ¼ �

X
l2mðiÞ

DilUdil:
We furthermore divide Eq. ðP1Þ by að0Þi and make use of cpð0Þ

að0Þ ¼ qð0Það0Þ ¼ 1. The pressure equation can then be written as
X
l2mðiÞ
ðDilp� DilUÞdil ¼ 0: ðP1Þ
If we apply the special geometry of the upper triangle to this equation, we obtain
ffiffiffi
2
p

Diepþ Dinpþ Diwp�
ffiffiffi
2
p

DieU � DinU � DiwU ¼ 0: ð3:9Þ
The analogous equation for the lower triangle reads redefinitions
ffiffiffi
2
p

Djlpþ Djspþ Djrp�
ffiffiffi
2
p

DjlU � DjsU � DjrU ¼ 0: ð3:10Þ
The overall system of linear equations consists of three equations per triangle, or six equations per Cartesian cell. To see
the relation between these equations, we introduce unified indices for the cell edges as depicted in Fig. 9, along with unified
orientations of the local coordinate systems. With the new indices the system of linear Eqs. (3.5)–(3.10) becomes
D2pþ D3pþ D3U � D2U ¼ 0; ðUaÞ

�D3pþ D1p� D3U þ D1U ¼ 0; ðVaÞ

�
ffiffiffi
2
p

D3p� D1pþ D2p�
ffiffiffi
2
p

D3U � D1U � D2U ¼ 0 ðPaÞ
Fig. 9. Unified edge indices (left) and orientation of the local coordinate systems (right) for the upper triangle a and lower triangle b.
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for the upper triangle and
D3pþ D4pþ D4U � D3U ¼ 0; ðUbÞ

D5p� D3p� D5U þ D3U ¼ 0; ðVbÞ
ffiffiffi
2
p

D3pþ D5p� D4p�
ffiffiffi
2
p

D3U � D5U � D4U ¼ 0 ðPbÞ
for the lower triangle. An equivalent system can be derived to be:
D1pþ D1U ¼ 0; ð3:11aÞ
D5p� D5U ¼ 0; ð3:11bÞ
D3p ¼ 0; ð3:11cÞ
D3U ¼ 0; ð3:11dÞ
D4pþ D4U ¼ 0; ð3:11eÞ
D2p� D2U ¼ 0: ð3:11fÞ
This system is valid for each pair of triangles inside a Cartesian cell. From Eqs. (3.11c) and (3.11d) follows that the pres-
sure of first order pð1Þ and the normal velocity of leading order Uð0Þ do not jump at any diagonal edge inside the grid. For inter-
nal edges let us consider two neighbouring triangle pairs A and B, as depicted in Fig. 10, with a common edge i. The
corresponding two systems of linear equations have only the jump variables Dip and DiU in common. The equation related
to i as the right edge is (3.11e), and for i as the left edge is (3.11f), leading to
Dipþ DiU ¼ 0 ðright edgeÞ; ð3:12Þ
Dip� DiU ¼ 0 ðleft edgeÞ ð3:13Þ
with the unique trivial solution: Dip ¼ DiU ¼ 0. The same can be shown for vertical edges. The unique solution indicates that
the jumps of pð1Þ and Uð0Þ at all internal edges vanish:
Dip ¼ 0; DiU ¼ 0 for i 2 X=@X: ð3:14Þ
This shows that the pressure of first order pð1Þ is constant inside the grid. For a detailed analysis of boundary conditions cf. [8].
In addition, the leading-order velocity uð0Þ is zero-jump constrained, i.e. the normal component of the velocity field does not
jump at cell interfaces.
3.4. Degrees of freedom for uð0Þ

The question arises, how many degrees of freedom f remain for the velocity field under the zero-jump constraint (3.14). In
the following analysis we need concepts, which slightly deviate from standard terms used in graph theory, cf. [10]. We there-
fore give the following definitions:

Definition 1. The primary grid of finite volume cells induces a primary grid graph G or simply primary graph in a
straightforward manner: grid edges are edges of the graph and where edges meet, we define the vertices of G.

Definition 2. The extended dual grid graph G� consists of internal vertices placed inside each finite volume cell. The ghost cells
for boundary conditions give rise to external vertices. Two vertices are neighbours if the corresponding primary grid cells have
a common edge. External vertices are only connected to their internal neighbour vertices – the corresponding edges are
called external edges. Internal edges are the edges connecting internal neighbour vertices with each other.
Fig. 10. Neighbouring cells with common edge i.
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Recall that a dual grid graph, different to its extended counterpart defined above, has only one vertex outside the primary
grid graph, which corresponds to the face associated with the outer region. Note that in our context of two-dimensional fi-
nite volume grids, the corresponding grid graphs and its extended duals are always finite, connected and planar.

3.4.1. Motivating example
Before elaborating a rigorous derivation for the degrees of freedom, we give a few motivating examples. For a triangula-

tion derived from a Cartesian grid of size m� n we ask for the degrees of freedom fm;n. Using the example of a grid of size
3� 4, we show the general approach to the problem with concepts from graph theory. In Fig. 11(a)–(h) we illustrate how
the construction of the extended dual grid graph G� can be associated with the degrees of freedom. With the thin lines
we represent G. The edges of G� are the thick lines. They represent the ‘inheritance’ of a velocity component from a neigh-
bouring cell due to the fact, that there are no jumps of the normal velocity component at a cell edge. We emphasise the direc-
tion of inheritance in each step by an arrow head. The sequence of construction is indicated in each subfigure by numbers
next to a new edge.
a b

c d

e f

g h

Fig. 11. Grid of size 3� 4 with normal velocities ‘inherited’ from neighbour cells.
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Subfigure (a) shows the inheritance from the ghost cells.
If a cell has inherited two velocity components from neighbouring cells, then its velocity vector is fully determined and

the cell itself can pass on a normal velocity component to the remaining neighbour. Translated into the graph construction
this means: once a vertex in G� has two edges, we are allowed to draw the missing third edge to the remaining neighbour
vertex, as depicted in subfigure (b).

If the process of building G� stalls, there is a free choice to specify an additional velocity component in a cell with only one
fixed velocity component. After this ‘intervention’ its velocity vector is fully determined and the inheritance starts again. We
represent such a choice of a velocity component inside a cell by a dotted line to one of its neighbours. In subfigure c) we first
draw the dotted line 1, and than the other lines 2, 3 and 4.

This process can be continued until the entire extended dual graph is complete. Counting the dotted lines will give us the
number of velocity components that have been chosen during the construction. It is an upper bound on the number of de-
grees of freedom. In the 3� 4-example shown in Fig. 11 we obtain six degrees of freedom: f3;4 ¼ 6.

3.4.2. Graph theoretic analysis
Using the construction principle presented above, we can now approach a general derivation for the degrees of freedom

for uð0Þ inside the grid. Imagine some dotted lines are given right from the start. Let us call them fixed edges. In terms of de-
grees of freedom this means that all free velocity components have been set right from the beginning. If the construction does
not stall until G� is complete, there is no need to specify a further velocity component. In this case we call the graph con-
structable. How many fixed edges are at least necessary for such a graph to be constructable? The answer agrees with the
degrees of freedom we look for.

Instead of constructing the extended dual grid graph, we delete it, which ends up as the same: let T be a subgraph of G�

where the edges missing in T represent the fixed edges from approach above. If the two vector components in a vertex are
determined, we are allowed to delete this vertex. The passing on of a component to the remaining neighbour is symbolised
by deleting the corresponding edge. Thus, a vertex of degree 1 has inherited already two components and can be deleted
together with the adherent edge. These principles can be summarised in the following rule:

Definition 3. Deletion ruleA vertex has to be deleted if it has degree 1.

We want to know the smallest number of edges missing in T, i.e. we look for some sort of maximal subgraph. The following
definition specifies this idea:

Definition 4. We call a subgraph T of G� deletable, if it can be deleted only by applying the rule of deletion. A subgraph Tn is
called maximal deletable, if it contains all vertices of G� and if any additional edge makes the resulting subgraph Tnþ1 no
longer deletable, where the subscript n indicates the number of edges in the graph.

The problem of finding the degrees of freedom for a vector field under the zero-jump constraint can now be rephrased:
what is the difference between the number of edges in a maximal deletable subgraph T 	 G� and the extended dual grid graph
G�? The answer can be found with the following lemma.

Lemma 5. T is a maximal deletable subgraph of an extended dual grid graph G� if and only if G� is a spanning tree in G�.

Proof. Let us assume, in the first part of the proof, that T is a maximal deletable subgraph of G�. We have to show, that T is a
spanning tree in G�. Since T is deletable, it does not have cycles. This follows from Definition 4, because a cycle has only ver-
tices of degree P 2 and there is no way to start deleting such a part of T with the deletion rule. However, if a cycle in G�

cannot be deleted, T itself cannot be (completely) deleted. Furthermore, from T being maximal follows that T has to be con-
nected and contains all vertices of G�. To see this, let us assume T is not connected. Then T has at least two components,
which can be connected by at least one additional edge without creating a cycle. The resulting subgraph is still deletable,
but then the original graph was not maximal. With the same argument all vertices of G� must be contained in the subgraph
T. Otherwise T would consist of several components.

In the second part, let us assume that T is a spanning tree in G�. We have to show that T is a maximal deletable subgraph of
G�. Every tree has at least one leaf, cf. [10], i.e. a vertex of degree 1, which can be deleted – and the result is again a tree. We can
continue deleting leafs until the entire graph is deleted. Therefore, any spanning tree is deletable. To see that any spanning tree
T is maximal deletable consider: if we add a further edge to T out of the complement G� n T , we create a cycle and the resulting
graph is no longer deletable. Consequently, any spanning tree T in G� must be a maximal deletable subgraph of G�. h

It is now time to harvest the fruits from the trees. The number of velocity components which can be chosen arbitrarily
equals the number of edges missing in the maximal deletable subgraph T compared to G�. This number is a constant for every
grid, since a spanning tree in a graph has always the same number of edges, cf. [10]. We therefore have the following theorem:

Theorem 1. Let u be a discrete vector field defined in the triangular cells of a grid. Let Ne;Nv be the number of edges and vertices in
the corresponding extended dual graph G� and let N span

e be the number of edges of a spanning tree in G�. The degrees of freedom for
u under the zero-jump constraint is then given by
f ¼ Ne � Nspan
e ¼ Ne � Nv þ 1: ð3:15Þ



F. Rieper, G. Bader / Journal of Computational Physics 228 (2009) 2918–2933 2929
Proof. We summarise the derivation of this theorem: the degrees of freedom is the minimal number of edges which can be
omitted in G�, so that the resulting subgraph T is still deletable. According to Lemma 5 such a maximal subgraph must be a
spanning tree in G�. The differences of edges is a fixed number given by Ne � Nspan

e , which proves the first part of (3.15). The
number of edges Nspan

e in T is related to the number of vertices Nv of G� by Nv ¼ Nspan
e þ 1, cf. [10]. This proves the second

equality in (3.15). h

This theorem can be applied to a general unstructured grid. We restrict the argument, like the rest of the proof, to trian-
gulations derived from Cartesian grids of size m� n, i.e. with 2mn triangular cells. It can be easily shown that the degrees of
freedom are then given by
fm;n ¼ ðm� 1Þðn� 1Þ: ð3:16Þ
Two questions remain to be answered: First of all, are fm;n enough degrees of freedom? To be more precise, is fm;n of the same
order of magnitude as the number of velocity components in high speed flow? In high Mach number flows the number of velocity
components that are available for representing a physical velocity field is 4mn – two components per triangle – while in low
Mach number flow the degrees of freedom are approximately mn. The degrees of freedom are therefore reduced by a factor of
four but are of the same order of magnitude OSðmnÞ and, in this sense, it is enough. Recall that the statement is restricted to
the leading order velocity uð0Þ in low Mach number flow. Higher-order terms of the velocity are not zero-jump constrained
and therefore do not face the problem of having to few degrees of freedom.

Secondly, are the components that can be chosen arbitrarily dispersed throughout the grid or can exist large regions with all
velocity components fixed by the jump constraint? The extended dual graph has elementary cycles positioned around each
internal vertex of the primary grid, while the subgraph T has no cycles at all. Therefore, at least one ‘missing edge’, i.e. an
edge of G� T , must be in the vicinity of each internal vertex of the primary grid. This states that the arbitrary choices for
the velocity components are well dispersed.
4. Conclusion and discussion

We have presented numerical data showing that the classical first-order Roe scheme does not suffer from the accuracy
problem known for Cartesian or dual grids of a triangulation, if applied on a primary grid with triangular cells. It was shown
that the semi-discrete asymptotic equations force the first-order pressure pð1Þ to be constant in space and the jumps of the
normal component of the velocity of leading order DUð0Þ to vanish. The first constraint is in agreement with the physical pres-
sure field for low Mach numbers; the second constraint leaves enough degrees of freedom (DOF) for a physically correct
velocity field.

We will extend the reasoning related to the DOF to other cell geometries, which demonstrates the uniqueness of trian-
gular cells. In [11] Guillard et al. show that at the heart of the accuracy problem is the Riemann problem itself: any jump in
the leading order (normal) velocity Uð0Þ leads to a first order pressure pð1Þ — even in the exact solution. Ergo, a variation in pð1Þ

can be avoided, if the velocity field is such that its normal components Uð0Þ are continuous at cell interfaces. (In fact, for con-
stant pð1Þ, it is sufficient to have a vanishing second order difference of uð0Þ but I expect a similar loss of DOF). Let us calculate
the asymptotic DOF for a grid with n cells, where n is large compared to the number of boundary cells. In 2D n cells have 2n
velocity components to be specified. Each cell has k edges, leading to 1

2 kn edges asymptotically and the same number of con-
straints. Applying these thoughts to triangles and quadrangles, we obtain
f2D 
 2n� k
2

n;

fM 
 2n� 3
2

n ¼ 1
2

n;

f� 
 2n� 4
2

n ¼ 0:
We see that in a triangular mesh 1=4 of the original DOF are lost in low Mach number flows, which is bearable. For cells
with 4;5 or more edges there are never enough degrees of freedom to represent a physically correct flow field. This also ex-
plains why dual grids of triangulations, used in calculations in [7,12], also lead to the accuracy problem of the Roe scheme.

The reasoning can easily be transferred to 3D:
f3D 
 3n� k
2

n;

fM 
 3n� 4
2

n ¼ n;

f� 
 3n� 6
2

n ¼ 0:
With a similar result: only tetrahedra allow enough degrees of freedom.
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Higher order schemes are more relevant in practice but were not analysed by the authors yet. First numerical experiments
with the second-order Roe scheme on unstructured triangular grids with the code HYDSOL of IAG Stuttgart lead to completely
wrong results. We assume that the reconstruction process prevents the establishment of a continuous normal velocity com-
ponent introducing the wrong pressure field pð1Þ. Schemes with higher order (> 2) allow a smoother reconstruction which
seems to prevent the jumps of the normal velocity component and with it the accuracy problem. DG schemes, for example,
are known to produce excellent low Mach number flows, cf. Feistauer [13].
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Appendix A. A.1. Asymptotic equations of the Roe scheme

The analysis presented here is closely related to the one by Guillard and Viozat et al. in [7]. The major differences are: The
nomenclature was changed from Cartesian to irregular grids with triangular cells. Although it is a semi-discrete analysis, we
introduce a time scaling which agrees with an explicit time discretisation: the time steps are OSðMÞ due to the CFL condition.
This is reflected in the Strouhal number Str ¼ 1=M, appearing as scaling factor for the time derivatives in the conservation
laws. Note that the presented analysis in this article is restricted to the steady flow equations, so that this difference will not
be of importance. For nomenclature and index notation we refer to Section 3.

The characteristic variables Dwi can be written in terms of the local coordinate system at the cell interfaces as:
Dw1 ¼
1

2ail

Dilp
ail
� qilDilU

� �
;

Dw2 ¼ Dilq�
Dilp
a2

il

;

Dw3 ¼ qilDilV ;

Dw4 ¼
1

2ail

Dilp
ail
þ qilDilU

� �
:

The expressions of the eigenvectors are:
r1ðqilÞ ¼

1
uil � ailðnxÞil
v il � ailðnyÞil

hil � ailUil

0
BBB@

1
CCCA; r2ðqilÞ ¼

1
uil

v il

1
2 ðu2

il þ v2
ilÞ

0
BBB@

1
CCCA;

r3ðqilÞ ¼

0
�ðnyÞil
ðnxÞil

V il

0
BBB@

1
CCCA; r4ðqilÞ ¼

1
uil þ ailðnxÞil
v il þ ailðnyÞil

hil þ ailUil

0
BBB@

1
CCCA:
The local eigenvalues are given by
k1 ¼ Uil � ail; k2 ¼ Uil; k3 ¼ Uil; k4 ¼ Uil þ ail: ð5:17Þ
The Roe scheme in two space dimensions is given by
d
dt

qi þ
1
Ai

X
l2mðiÞ

Uðqi;ql;nilÞdil ¼ 0
with the Roe flux function
Uðqi;ql; bfnilÞ ¼
FðqiÞ þ FðqlÞ

2
� bfnil þ

1
2

X4

k¼1

rkðqilÞjkkðqilÞjDwkðDilqÞ:
The physical flux F consists of two space components F ¼ ðf;gÞT , cf. Eq. (3.1). For later use, we give the complete system of
equations for the transport of mass density q, momentum density qu and qv , and the density of total energy qe:
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Ai
d
dt

qi þ
1
2

X
l2mðiÞ

qlul � nildil þ
1
2

X
l2mðiÞ

jUiljðDilq�
Dilp
a2

il

Þ þ qil
Uil

ail
DilU þ

Dilp
ail

� �
dil ¼ 0; ð5:18Þ

Ai
d
dt

qiui þ
1
2

X
l2mðiÞ

qlulul � nil þ plðnxÞil
� 	

dil þ
1
2

X
l2mðiÞ

jUiljðDilq�
Dilp
a2

il

Þuil þ qil
Uil

ail
uilDilU

� �
dil

þ 1
2

X
l2mðiÞ

�qiljUiljðnyÞilDilV þ
ðUnx þ uÞil

ail
Dilpþ qilailðnxÞilDilU

� �
dil ¼ 0; ð5:19Þ

Ai
d
dt

qiv i þ
1
2

X
l2mðiÞ

qlv lul � nil þ plðnxÞil
� 	

dil þ
1
2

X
l2mðiÞ

jUiljðDilq�
Dilp
a2

il

Þv il þ qil
Uil

ail
v ilDilU

� �
dil

þ 1
2

X
l2mðiÞ

qiljUiljðnxÞilDilV þ
ðUny þ vÞil

ail
Dilpþ qilailðnyÞilDilU

� �
dil ¼ 0; ð5:20Þ

Ai
d
dt

qiei þ
1
2

X
l2mðiÞ
ðqlel þ plÞul � nildil þ

1
2

X
l2mðiÞ

jUiljðDilq�
Dilp
a2

il

Þu
2
il þ v2

il

2
þ qil

Uil

ail
hilDilU

� �
dil

þ 1
2

X
l2mðiÞ

qiljUiljVilDilV þ
ðhþ U2Þil

ail
Dilpþ qilailUilDilU

( )
dil ¼ 0: ð5:21Þ
A.1.1. Nondimensionalisation
We introduce the following scalings: lref is the reference length, pref is the reference pressure, q ref is the reference density,

a2
ref ¼ p ref=qref is the reference speed of sound, u ref is the reference flow velocity, tref ¼ l ref=aref is the reference time and

href ¼ pref
qref
¼ a2

ref is the reference specific total enthalpy. The dimensionless numbers relevant to this type of flow are Mach
and Strouhal number:
M ¼ uref

aref
and Str ¼ lref=tref

uref
¼ 1

M
:

In the following, all equations are sorted by orders of magnitude in M. The nondimensional form of the continuity equation is
M0Ai
d
dt

qi þ
1
2

X
l2mðiÞ

Dilp
ail

dil þ M1 1
2

X
l2mðiÞ

qlul � nil þ jUiljðDilq�
Dilp
a2

il

Þ
� �

dil þ M2 1
2

X
l2mðiÞ

qil
Uil

ail
DilUdil ¼ 0: ðCÞ
A similar procedure leads to the equation of x-momentum conservation:
M�1 1
2

X
l2mðiÞ

plðnxÞildil þM0Ai
d
dt

qiui þ
1
2

X
l2mðiÞ

ðUnx þ uÞil
ail

Dilpþ qilailðnxÞilDilU
� �

dil

þM1 1
2

X
l2mðiÞ

qlulul � nil þ jUiljðDilq�
Dilp
a2

il

Þuil � qiljUiljðnyÞilDilV
� �

dil þ M2 1
2

X
l2mðiÞ

qil
Uil

ail
uilDilUdil ¼ 0; ðMxÞ
and the equation of y-momentum conservation:
M�1 1
2

X
l2mðiÞ

plðnyÞildil þM0Ai
d
dt

qiv i þ
1
2

X
l2mðiÞ

ðUny þ vÞil
ail

Dilpþ qilailðnyÞilDilU
� �

dil

þM1 1
2

X
l2mðiÞ

qlv lul � nil þ jUiljðDilq�
Dilp
a2

il

Þv il � qiljUiljðnxÞilDilV
� �

dil þ M2 1
2

X
l2mðiÞ

qil
Uil

ail
v ilDilUdil ¼ 0: ðMyÞ
The equation of energy conservation in non-dimensional form is
M�1 1
2

X
l2mðiÞ

jUiljðDilq�
Dilp
a2

il

Þu
2
il þ v2

il

2
þ qiljUiljVilDilV

� �
dil þM0Ai

d
dt

qiei þ
1
2

X
l2mðiÞ

hil

ail
Dilpdil

þM1 1
2

X
l2mðiÞ
ðqlel þ plÞul � nildil þM2 1

2

X
l2mðiÞ

U2
il

ail
Dilpþ qilailUilDilU þ qil

Uil

ail
hilDilU

( )
dil ¼ 0: ðEÞ
A.1.2. Asymptotic equations
As in the continuous asymptotic analysis, we assume for all physical quantities / an asymptotic 3-term expansion
/ ¼ /ð0Þ þM/ð1Þ þM2/ð2Þ þ calOð M2Þ as M! 0
and insert these expansions in the semi-discrete equations. They read, sorted by powers of the Mach number:
Order M�1:
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X
l2mðiÞ

pð0Þl ðnxÞildil ¼ 0; ðM�1
x Þ

X
l2mðiÞ

pð0Þl ðnyÞildil ¼ 0: ðM�1
y Þ

Order M0:

Ai
d
dt

qð0Þi þ
1
2

X
l2mðiÞ

Dilpð0Þ

að0Þil

dil ¼ 0; ðC0Þ

Ai
d
dt

qð0Þi uð0Þi þ
1
2

X
l2mðiÞ

pð1Þl ðnxÞildil þ
1
2

X
l2mðiÞ

ðUð0Þnx þ uð0ÞÞil
að0Þil

Dilpð0Þ þ qð0Þil að0Þil ðnxÞilDilU
ð0Þ

( )
dil ¼ 0; ðM0

xÞ

Ai
d
dt

qð0Þi v ð0Þi þ
1
2

X
l2mðiÞ

pð1Þl ðnyÞildil þ
1
2

X
l2mðiÞ

ðUð0Þny þ v ð0ÞÞil
að0Þil

Dilpð0Þ þ qð0Þil að0Þil ðnyÞilDilU
ð0Þ

( )
dil ¼ 0; ðM0

yÞ

Ai
d
dt

qð0Þi eð0Þi þ
1
2

X
l2mðiÞ

hð0Þil

að0Þil

Dilpð0Þdil ¼ 0: ðE0Þ

Order M1:

Ai
d
dt

qð1Þi þ
1
2

X
l2mðiÞ

Dilpð1Þ

að0Þil

þ qð0Þl uð0Þl � nil þ jUð0Þil j Dilqð0Þ �
Dilpð0Þ

ðað0Þil Þ
2

 !( )
dil ¼ 0; ðC1Þ

Ai
d
dt
ðqiuiÞð1Þ þ

1
2

X
l2mðiÞ

pð2Þl ðnxÞildil þ
1
2

X
l2mðiÞ

½ðUnx þ uÞilDilp�ð1Þ

að0Þil

þ ½qilailðnxÞilDilU�ð1Þ
(

þqð0Þl uð0Þl uð0Þl � nil þ jUð0Þil j Dilqð0Þ �
Dilpð0Þ

ðað0Þil Þ
2

 !
uð0Þil � qð0Þil jU

ð0Þ
il jðnyÞilDilV

ð0Þ

)
dil ¼ 0; ðM1

xÞ

Ai
d
dt
ðqiv iÞð1Þ þ

1
2

X
l2mðiÞ

pð2Þl ðnyÞildil þ
1
2

X
l2mðiÞ

½ðUny þ vÞilDilp�ð1Þ

að0Þil

þ ½qilailðnyÞilDilU�ð1Þ
(

þqð0Þl v ð0Þl uð0Þl � nil þ jUð0Þil j Dilqð0Þ �
Dilpð0Þ

ðað0Þil Þ
2

 !
v ð0Þil þ qð0Þil jU

ð0Þ
il jðnxÞilDilV

ð0Þ

)
dil ¼ 0; ðM1

yÞ

Ai
d
dt
ðqieiÞð1Þ þ

1
2

X
l2mðiÞ

ðhilDilpÞð1Þ

að0Þil

þ ðqð0Þl eð0Þl þ pð0Þl Þu
ð0Þ
l � nil

( )
dil ¼ 0: ðE1Þ
The terms in brackets with a superscript can be expanded using the rules for asymptotic expressions [12]. The equations
corresponding to the order M2 are not needed for the presented analysis. In the following we extract the equations for pres-
sure and velocity from the equations of mass, momentum and energy.

Evolution equation for pð0Þ To find the evolution equation for the pressure of leading order we replace in ðE0Þ the energy
density ðqeÞð0Þ by pð0Þ=ðc� 1Þ using the perfect gas law of leading order and obtain
d
dt

pð0Þ þ c� 1
2

1
Ai

X
l2mðiÞ

hð0Þil

að0Þil

Dilpð0Þdil ¼ 0 ðP0Þ
Semi-discrete equation for pð1Þ and uð0Þ To find the evolution equation for pð1Þ we replace the energy density ðqeÞð1Þ in Eq. (E1) by
the pressure pð1Þ
ðqieiÞð1Þ ¼ eð1Þi ¼
1

c� 1
pð1Þi :
We use the fact pð0Þ ¼ const, proved in Section 3.2, which implies hð0Þ ¼ const. This simplifies the Roe averages to
hð0Þil ¼ hð0Þi andað0Þil ¼ að0Þi : Using
hð0Þi ¼
c

c� 1
pð0Þi

qð0Þi

and ðað0Þi Þ
2 ¼ cpð0Þi

qð0Þi

;
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the second term of (E1) can further be transformed to
ðhilDilpÞð1Þ

að0Þil

¼ hð0Þil Dilpð1Þ þ hð1Þil Dilpð0Þ

að0Þil

¼ að0Þi

c� 1
Dilpð1Þ:
In the third term we use
ðqð0Þl eð0Þl þ pð0Þl Þ ¼
c

c� 1
pð0Þl
and obtain the
Evolution equation for pð1Þ:
d
dt

pð1Þi|fflfflffl{zfflfflffl}
@
@tp
ð1Þ

þ cpð0Þi

1
Ai

X
l2mðiÞ

uð0Þl � nil

2
dil|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cpð0Þr�uð0Þ

¼ �1
2

að0Þi

1
Ai

X
l2mðiÞ

Dilpð1Þdil|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1
2að0Þr2pð1Þd

: ðP1Þ
The underbracing shows the terms appearing in the corresponding modified equation. The second term in (P1) is the numer-
ical viscosity of the scheme and is OðdÞ as it should be for a first-order scheme.

We do a similar transformation of (M0
x ) to derive the equation for uð0Þ. Omitting Dilpð0Þ and replacing the Roe averages of

constant quantities by their node values qð0Þil ¼ qð0Þi and að0Þil ¼ að0Þi , we obtain the
Evolution equation for uð0Þ:
d
dt

uð0Þi|fflfflffl{zfflfflffl}
@
@tu
ð0Þ

þ 1

qð0Þi

1
Ai

X
l2mðiÞ

pð1Þl ðnxÞil
2

dil|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

qð0Þ
@
@xpð1Þ

¼ �1
2

að0Þi

qð0Þi

1
Ai

X
l2mðiÞ

qð0Þil DilU
ð0ÞðnxÞildil|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
2að0Þ @

2

@x2uð0Þd

: ðU0Þ
Beneath the equations, the corresponding continuous terms are given. For completeness we also give the
Evolution equation for vð0Þ:
d
dt

v ð0Þi|fflfflffl{zfflfflffl}
@
@tvð0Þ

þ 1

qð0Þi

1
Ai

X
l2mðiÞ

pð1Þl ðnyÞil
2

dil|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

qð0Þ
@
@ypð1Þ

¼ �1
2

að0Þi

qð0Þi

1
Ai

X
l2mðiÞ

qð0Þil DilU
ð0ÞðnyÞildil|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
2að0Þ @

2

@y2vð0Þd

: ðV0Þ
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